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The generation of a gravity current by the release of a semi-infinite region of
buoyant fluid of depth H overlying a deeper, denser and quiescent lower layer in
a rotating channel of width w is considered. Previous studies have focused on the
characteristics of the gravity current head region and produced relations for the
gravity current speed ¢, and width w, as a functions of the local current depth
along the wall &,, reduced gravity g’, and Coriolis frequency f. Here, the dam-break
problem is solved analytically by the method of characteristics assuming reduced-
gravity flow, uniform potential vorticity and a semigeostrophic balance. The solution
makes use of a local gravity current speed relation ¢, =c,(h,, ...) and a continuity
constraint at the head to close the problem. The initial value solution links the
local gravity current properties to the initiating dam-break conditions. The flow
downstream of the dam consists of a rarefaction joined to a uniform gravity current
with width w;, (< w) and depth on the right-hand wall of 4, terminated at the head
moving at speed c¢,. The solution gives &y, ¢;, w, and the transport of the boundary
current as functions of w/Lg, where Lgr=./g’H/f is the deformation radius. The
semigeostrophic solution compares favourably with numerical solutions of a single-
layer shallow-water model that internally develops a leading bore. Existing laboratory
experiments are re-analysed and some new experiments are undertaken. Comparisons
are also made with a three-dimensional shallow-water model. These show that lateral
boundary friction is the primary reason for differences between the experiments and
the semigeostrophic theory. The wall no-slip condition is identified as the primary
cause of the experimentally observed decrease in gravity current speed with time. A
model for the viscous decay is developed and shown to agree with both experimental
and numerical model data.

1. Introduction

Rotating gravity currents are important features of numerous geophysical flows
(Griffiths 1986; Simpson 1997). Examples include the penetration of coastally trapped
disturbances in the marine atmospheric boundary layer (Beardsley et al. 1987; Dorman
1987) and the discharge of relatively fresh river water into the coastal ocean (e.g.
Munchow & Garvine 1993; Rennie, Largier & Lentz 1999). Studies of rotating
gravity currents have typically focused on the local dynamics of the gravity current
head produced by a dam-break in a rectangular channel. The rupture of the dam
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leads to a narrow gravity current that propagates along the right-hand wall of the
channel (looking downstream with northern hemisphere rotation). The experiments
showed an approximately laminar geostrophic boundary current that terminates at
a generally turbulent blunt bore-like nose from which fluid approaching the head
from behind may be detrained (Stern, Whitehead & Hua 1982; Griffiths & Hopfinger
1983; Kubokawa & Hanawa 1984). The bore speed ¢, =B./¢’hy,, Where h; is the
depth of the boundary current at the wall immediately upstream of the turbulent
head and g’ = gAp/p; is the reduced gravity, Ap is the density difference between the
ambient (p,) and gravity current fluids. These three studies found g~ 1.1, 1.3 and
1.0, respectively. The speed can be related to the maximum depth of the turbulent
bore which is about 1.3%, (Griffiths & Hopfinger 1983).

An important aspect of the Stern et al. (1982) (hereinafter referred to as SWH) and
Griffiths & Hopfinger (1983) (hereinafter referred to as GH) experiments was that in
many runs, ¢, decreased with time. SWH found that in some cases, the bore stagnated
and formed a growing gyre at the end of the gravity current. GH attributed the speed
decay to drag from Taylor column formation and radiation of inertial waves excited
by Kelvin—Helmholtz billows near the bore head.

While the speed of the bore is unambiguous, the definition of gravity current
width w, is less clear cut. Turbulence and detrainment at the head lead to multiple
possibilities. Additionally, the trailing gravity current may taper toward the front and
baroclinic eddies may be present, though GH argue that the eddies are the result
of Kelvin—Helmholtz instability occurring in the head region. SWH define the width
to be that part of the geostrophic boundary current with velocity in the direction
of propagation u > ¢, (the definition does includes fluid in a viscous wall boundary
layer with u <¢,) and excludes the fluid detrained from the bore head. They also
averaged the width over some length of the current upstream of the head. GH take
w, to be the maximum width of the gravity current head including any detrained
fluid. Kubokawa & Hanawa (1984) define w; as the average total current width in
the region immediately behind the bore head. Despite these different in definitions, all
three studies found w;, = B,,./g'h,/f, with constant 8,, 0.5, 0.7 and 0.8, respectively.

SWH developed a reduced-gravity shallow-water theory for the gravity current.
Two self-similar solutions of the long-wave, or semigeostrophic, equations describe
the shape of the current: a thinning ‘wedge’ solution and a ‘bore-like’ solution. Each
solution is associated with a Riemann invariant of the system that is uniform for
all fluid parcels. The bore-like solution had the property that the front steepened
with time and predicted a limiting bore with the maximal upstream gravity current
width ~0.42,/g’h,/f. Intrusions initiated in channels wider than this maximum were
expected to adjust so that limiting width current propagates downstream. SWH
favoured this solution over the wedge because of its bore-like character. They derived
a rotating extension to the Bernoulli-conserving, non-rotating bore condition of
Benjamin (1968). When joined to the limiting gravity current width, the condition
gave ¢, = 1.57./¢’h,. Imposition of continuity at the bore head implied a detrainment
of 32% of the gravity current flux at the bore head.

Kubokawa & Hanawa (1984) discussed solutions to the same semigeostrophic equa-
tions as SWH. Instead of assuming a bore with the SWH limiting gravity current
width, they developed a shock joining theory to arrive at a bore speed condition
c, ~1.45, /g'h, and width w;, ~0.68./¢’h,/f. No detrainment was predicted since mass
continuity was imposed in the shock theory. They argued, but did not demonstrate,
that SWH’s limiting bore solution would not be realized since a shock could propagate
upstream and alter the upstream width.
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Hacker & Linden (2002) extended an earlier theory by Nof (1987) for steady one and
two active layer rotating gravity currents. The analysis assumes energy and momentum
conservation, and zero front-relative flow in the gravity current. For a single active
layer case of interest here, they found g =22 with B, =2"'/? following from geo-
strophy. Martin & Lane-Serff (2005) developed a model with energy loss (in the
ambient layer) and recovered Hacker & Linden’s results in the limit of an infinitely
deep ambient layer.

None of the rotating gravity relations above are complete solutions to the dam-
break problem. They are local conditions for ¢, and w,, and not relations between
the gravity current and the reservoir width w and initial depth H. Furthermore, the
(uniform) Riemann invariant leading to the SWH bore-like solution is inconsistent
with an initially stagnant upstream reservoir. This has been demonstrated by Helfrich,
Kuo & Pratt (1999, hereinafter referred to as HKP) with their analytical solution
to the single-layer dam-break, or Rossby adjustment, problem in a rotating channel.
Rather, it is the rarefaction, or thinning wedge, solution that is consistent with the
upstream reservoir. HKP found that at the leading edge, the nose has vanishing
width and depth and travels at a constant speed >2(g'H)"/? that increases with w
(i.e. rotation). The solution is the rotating analogue of the classic non-rotating dam-
break solution in which the nose of the rarefaction travels down the channel with
speed 2(g'H)'/? (Stoker 1957).

However, as the experimental studies demonstrate, the single-layer solutions with a
rarefying nose are not realized in two-layer systems with small g’, even if the lower
layer is infinitely deep. In the non-rotating case, the participation of the lower layer
in the momentum and energy budgets of the bore gives ¢, <(2g'H)"/?> (Benjamin
1968; Klemp, Rotunno & Skamrock 1994, 1997). With rotation, similar dynamical
considerations apply and lead to the theoretical bore conditions given above.

To resolve this problem, it is necessary to modify the HKP solution in such a way
that the local two-layer dynamics leading to the gravity current head are included.
This is done by matching to the rarefaction solution a local bore condition of the
form ¢, =cp(hp, ...). This approach was first employed for the non-rotating problem
by Abbott (1961) and later by Garvine (1981). The result is a theory that links
in a dynamically consistent manner the gravity current properties ¢, w, and h, to
the reservoir conditions w, H, g’ and f. The solution gives the spatial and temporal
evolution of the flow outside the ageostrophic and non-hydrostatic bore head, which
is simply the downstream terminus of the gravity current. Since the solution is built
around the reduced-gravity model, it is restricted to the limit of H/Hy < 1, where Hy
is the total depth of both layers.

The HKP theory is briefly reviewed and then extended to incorporate a bore con-
dition in §2. The theory is then favourably compared in §3 with numerical solutions
of the single-layer shallow-water equations in advective form that internally develop
a blunt bore. In §4, the results of some new laboratory experiments and those from
SWH are compared with the theory. Some substantial differences with the theory are
found and these are explored in § 5 through numerical solutions of a three-dimensional
shallow-water model that accounts for aspects of the experiments that are beyond the
single-layer model and theory. The numerical solutions agree well with the theory if the
sidewalls boundary conditions are stress-free (slip). They are in much better agreement
with the experiments if the wall boundary conditions are no-slip. In particular, signi-
ficant bore speed decay only occurs with the no-slip boundary conditions. A simple
theory for the effects of lateral wall friction on bore propagation is developed in § 6 and
compared to the numerical solutions and experiments. The results are discussed in §7.
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2. Semigeostrophic theory

Much of the theoretical development follows closely HKP, where readers are
referred for greater detail. The basic aspects are summarized and new developments
related to the gravity current head are introduced.

Consider a rectangular channel with constant width w rotating about the z-axis with
Coriolis frequency f. The x-axis is directed along the channel and the channel walls
are at y =+w/2. Initially, a buoyant layer of motionless fluid of density p; = 0, — Ap
and depth H fills the channel behind the dam (x <0). The buoyant layer rests on an
infinitely deep motionless layer of fluid with density p,. The motion of the upper layer
is taken to be governed by the single-layer (reduced-gravity) shallow-water equations
(in dimensionless form)

ou ou ou oh

g - = —— 2.1
o T TV VT Tax 2D
v dv v oh
s (L) = 2 22
<8t +u8x+v8y>+u 3y’ (2.2)
oh d d
— 4+ —(uh —(vh) = 0. 2.3
a7 +8x(u )+ ay(U ) (2.3)

Here, x has been non-dimensionalized by the along-channel length scale L, y by the
deformation radius L = . /¢g’H/f, and time ¢t by L/./g’H. The layer depth £ is scaled
by H, the along-channel velocity u by ./¢g’H, and the cross-channel velocity v by
8./¢'H. Here, g =gAp/p, is the reduced gravity. The parameter § = Lz/L.

It is assumed that § -0 in (2.1)~(2.3). The resulting semigeostrophic, or long-
wave, equations are formally not appropriate in the times immediately following the
dam-break, especially for wide channels, but do become increasingly valid as the
flow propagates down the channel and the length scale L increases (HKP; Stern &
Helfrich 2002).

In this semigeostrophic limit, the potential vorticity

1 —0u/dy
~ h

is conserved following fluid parcels. Combination of (2.4) with the geostrophic balance
remaining in (2.2) after taking § =0 gives

0%h

2 —qgh =—1. (2.5)
The potential vorticity is scaled with f/H. For the motionless initial conditions
considered, g = 1.

After removal of the dam at t =0, the layer downstream of the dam may either
occupy the whole channel width w (non-dimensionalized by Lz), or may separate
from the left-hand wall (looking in the downstream direction). In the latter case, the
layer will have a width w,(x, #) and occupy —w/2 <y < w, —w/2. In either situation,
the solution to (2.5) with ¢ =1 can be written as (Gill 1977)

sinh(y — y.(x, 1)) cosh(y — y.(x, 1))

(2.4)

h(x,y, t)=1—h(x,t) Sinh (%we(x, t)) + (h(x,1)—1) wosh (%we(x, t)) . (2.6)
The along-channel velocity
u(x. y. 1) = h(x, t)cosh(y —Yelx, 1)) (h(x. 1) — l)sinh(y — Ye(x, 1)) 27)

sinh (Jw,(x, 1)) cosh (Jwe(x, 1))’
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follows from geostrophy. Here, y. =(w, — w)/2 is the cross-channel mid-point of the
layer and

h = (h(x —w/2,t)+ h(x,w/2,t)), (2.8)
h=Y(h(x, —w/2,1) — h(x, w/2,1)). (2.9)

When the flow is attached to both walls, w,=w and y.=0 in (2.6) and (2. 7) The
dependent variables are i and h. For separated flow, h(w/2, y,1)=0 and h =h. The
dependent variables are then / and w,.

By taking the sum and difference of the along-channel momentum equation (2.1)
evaluated along each wall, or the right-hand wall and the free edge of the flow y = w, —
w/2 for separated flow, the governing equations reduce to a 2 x 2 quasi-linear system
(Pratt 1983; HKP)

av av
=0. 2.10
ar +A ox ( )
For attached flow
h
v = <h> (2.11)
and
hT! AT
A= _ A 2.12
<T3(h —)+T hT1> ’ (2.12)
with T = tanh(w/2). The characteristics are
‘:Tf = ¢t = T £ 121 — (1 - BT (2.13)
When the flow is separated
v— < ?) , (2.14)
3h4+ T2+ THR—1) THh—1)—h
2T, 27?2
A= ¢ - ¢ - 2.15
(21 h—(-01] (-1)h-a-nry | P
2[h+ (1 —h)T?] 27,
and
dx _ o _ —RT R P — (=BT, (2.16)

dr
with T, = tanh(w,/2).
The Riemann invariant R, on each characteristic can be obtained by integration
of
dU2 any

(2.17)

’
dU] + ayg —C+

where v; and a;; are the elements of v and A in (2.10), and ¢, are the characteristics
(Whitham 1974) . In the case of attached flow (2.17) can be integrated to give

Ry = ¢+ (T71 = T)log (20'°T + 2[1 — (1 — B)T?]'?), (2.18)

while for separated flow, (2.17) must be integrated numerically.
As discussed in HKP, the initial conditions of a motionless uniform-depth layer
for x <0 imply that one of the Riemann invariants must be the same for all fluid
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parcels. Taking R_ uniform gives the physically unrealistic result that fluid flows back
upstream into the reservoir immediately after removal of the dam. Thus, R, must be
uniform, and this provides a relation between the two dependent variables (either /
and h for attached flow, or i and 7, for separated flow) everywhere throughout the
flow. The R_ invariant provides another relation between the dependent variables
which can only be satisfied if the dependent variables are constant along each c_
characteristic. As a consequence, each c¢_ characteristic speed is constant.

Obtaining the rarefaction solution for a given T involves first determining from
(2.18) the relation between 4 and h. The constant R, is found by evaluating (2.18)
with the initial conditions =1 and & =0. The region of attached flow extends from
the location x,, of the signal that propagates upstream into the undisturbed layer to
the point x,, downstream of the dam where the flow separates from the left-hand
wall of the channel (figure 1a). The speed c,, is found from (2.13) with h=1and h=0
to be dx/dt =x,,/t =—1, the speed of a linear Kelvin wave propagating upstream
along the y=w/2 wall. The value of h at Xseps hsep, is found by numerical solution
of (2.18) with h=h. The speed cyp = Xyp/t 1s then determined from c“”‘“h (2.13). On
the c_ characteristics in the range c,, < c_ < ¢y, the solution for h and h is found by
simultaneous solution of the attached R, and c_ relations.

The flow is separated from the left-hand wall for x > x,,. The solution in this region
is obtained by numerical integration of the ordinary differential equation (2.17) associ-
ated with the R, invariant with the initial conditions & = 71561, and T, =T. The constant
speed of each solution pair, 4 and T,, is then found from ¢*” (2.16). The rarefaction
solution terminates at a point on the right-hand wall, x,.., Where the layer width
and depth simultaneously vanish. This point propagates at speed c,s. In the limit
w — 0, Cpose =C5p =2 and the classic non-rotating dam-break solution is recovered
(Stoker 1957). As the channel width is increased, c¢,s. grows monotonically to 3.80 at
w — oo, while ¢, decreases to 0. A schematic of the characteristic curves is given in
figure 1(b).

2.1. Gravity current conditions

Before preceeding to the solution of the full gravity current problem, it is necessary
to specify the bore conditions. The theoretical bore conditions discussed in §1 are
all related and easily derived from the semigeostrophic equations as follows. In
the present notation the difference of the along-channel momentum equation (2.1)
evaluated along each wall, or the right-hand wall and the free edge of the flow
y=w, —w/2 for separated flow, gives the continuity equation (Pratt 1983)

0A 00
— 4+ —==0. 2.1
ot + 0x 0 (2.19)

The momentum equation along the right-hand wall (y =—w/2) where the v=0 is

3MR d P

St (3udh o+ he) =0, (220
Here, uz and hy are the velocity and depth on the right-hand wall. From (2.6), and
(2.7), the cross-sectional area of the gravity current

we—w/2 _
A= / hdy =w, + 2T.(h — 1), (2.21)

w/2
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FIGURE 1. (a) Sketch of the surface plan view of a dam-break flow at some time after removal
of the dam (the dashed line). The upstream propagating wave is at x,,. The downstream
rarefaction solution (thin solid line) separates from the left-hand wall at x,, and terminates
as a thin wedge at x,05. The gravity current solution (thick solid line) joins the rarefaction at
x4 and terminates at the bore head at x, and has width w,. (b) Schematic of characteristic
curves for the rarefaction solution in HKP. The thin solid (dashed) lines are ¢_ (cy,) and
characteristics. (¢) Same as (b) for a separated gravity current solution.

and the transport

we—w/2 R
0= uhdy = 2hh. (2.22)

—w/2

Recall that if the flow is attached, w, = w, whereas if the flow is detached, h=h.
Assuming that the gravity current head propagates steadily at speed c¢,, a Rankine—

Hugoniot shock solution to (2.19) and (2.20) can be found. Taking A, Q, ui and

hr =0 ahead of the gravity current and values behind the bore head indicated by the
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subscript b, this solution is
Oy = Apcy, (2.23)
cp = Sup + ? (2.24)

Here, uy, is found from (2.7) with y=—w/2 and h, =h + I for attached flow and h,=
2h for separated flow. Equations (2.23) and (2.24) are equivalent to those obtained by
Kubokawa & Hanawa (1984) and (2.24) was derived by SWH. If u, = y¢;,, with y > 0,
(2.24) gives B =c,/ hy/* = (y — y2/2)~"/2. Thus g > 2'/2, with the lower bound obtained
for y =1 as is the case in Benjamin’s non-rotating solution and by Hacker & Linden
(2002) with rotation.

The gravity current given by the solution of (2.23) and (2.24) conserves energy
in the active layer. It is consistent with the dissipative analyses of Benjamin (1968)
and Klemp et al. (1997) who found that the head loss in the lower layer goes to
zero as the lower layer becomes infinitely deep. The gravity current becomes energy
conserving. The same result occurs in the rotating case (cf. Hacker & Linden (2002)
and Martin & Lane-Serff (2005) for uniform flow in the active layer).

An alternative to (2.24) is the empirical relation from the laboratory experiments
(SWH; GH; Kubokawa & Hanawa 1984), which in the present non-dimensionaliza-
tion is

c» = Bh)?, (2.25)
where B (=~ 1.2) is a constant. Thus, (2.23) (with (2.21)) and either (2.24) or (2.25),
give a relation between & and either & or T, that must be satisfied at the bore.

The continuity condition (2.23) is a bulk kinematic statement and ignores details of
the ageostrophic flow in the neighbourhood of the bore head. It leads to a definition of
the feeder gravity current that includes all the buoyant fluid within the gravity current,
not just fluid with u > ¢,. It does not permit determination of any detrainment, but
detainment can be included by multiplying the left-hand side of (2.23) by (1 —4p),
where §p is the specified fraction of the boundary current flux that is detrained at the
bore head. In what follows, §p will be set to zero.

It is informative to solve the bore conditions (2.23) and (2.24) for ¢, and w, given
hy,. Figure 2 shows that ¢, is insensitive to whether the flow is attached or detached
(i.e. rotation) h, < 1. Over this range, S =c¢, /h}l,/ *~1.42 is nearly constant and only
slightly greater than the bound 2!/2. When the flow is detached, 8, =w,/h,* ~0.67
is also nearly constant. These values are slightly smaller than those given in
Kubokawa & Hanawa (1984) for h, <0.5. It may be that their numerical solution
technique introduced a minor error. The slower bore speed from (2.24) with 8 =1.2
results in a slightly wider separated gravity current, 8, ~0.78.

In the full dam-break problem the depth on the right-hand wall 4, <1, thus when
channel width w>0.67 [0.78] for ¢, from (2.24) [(2.25)] the gravity current will be
separated from the left-hand wall. However, this is an upper bound on the channel
width for separated currents. It remains to determine 4, from the dam-break initial
conditions.

2.2. Semigeostrophic dam-break gravity current solutions

The connection of the rarefaction solutions to a bore condition is analogous to
the non-rotating dam-break problem in which a piston recedes in the downstream
direction at a fixed speed c¢,(< 2) (Stoker 1957). Since the speed of the piston is equal
to the local fluid velocity u, the layer depth at the piston %, can be found immediately
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FIGURE 2. The gravity current speed ¢, (solid) and width w;, (dashed) as functions of bore
height h; from the semigeostrophic shock solution (2.23) and (2.24). The speed and width
are shown for a separated current and the speed for an attached current with width w=0.1
(circle), 0.2 (square), 0.3 (diamond), 0.4 (upright triangle), 0.5 (inverted triangle) and 0.6 (star).
For the attached currents the symbol indicates the minimum #,, for a solution.

from R, Riemann invariant. The leading edge is joined to the rarefaction by a region
of constant h=h, and the continuity statement u =c,. The connection occurs at a
point x4, which has a constant speed c,(< ¢;,) equal to the c_ characteristic evaluated
with h, and u,. In the case of a gravity current the bore speed is unknown, but
given a local relation c¢,(h,;...), ¢, and h, are obtained as part of the solution.
Abbott (1961) discussed the non-rotating case with c,,—ﬁh]/ 2. There the Riemann
invariant R, =u+2h'/? =2 gives h, =4(2+ B)~2. The bore speed ¢, =28(2+ )~ and
the junction point speed c, = (28 —2)(2+ B)~". Similar matching of gravity current
head conditions to shallow-water characteristic solutions has been explored for time-
dependent non-rotating flow (Garvine 1981; O’Donnell & Garvine 1983) and for
steady rotating flow (Garvine 1987).

Assuming that the flow at the gravity current head is separated from the left-hand
wall as sketched in figure 1(a), the rotating gravity current solution is obtained by
the simultaneous solution of (2.23) and the R, invariant relation between h and T,
from (2.17) for h, =h;/2 and T, in the gravity current. The speed c, is then given
from ¢*?, (2.16), with h = h;, and T, = T,,. The bore speed c;, follows from either (2.24)
or (2.25) used to evaluate (2 23). Between x, and x;, the solutions have constant
h=h, and width w, = tanh™ (2Teb) For x < x4, the flow is the rarefaction solution
described above. As w is decreased, eventually w, =w. For narrower channels, the
gravity current is attached to the left-hand wall (w, =w) and ¢, =c;. The solution
procedure for h; and h, is the same as described above with the appropriate changes
in the relations going into (2.23) and R, from (2.18).

A schematic of the characteristic curves for the gravity current solution is given in
figure 1(c). In the uniform gravity current region x4 <x < x;, both the c_ (=c,4) and
¢, characteristics are uniform and ¢, > ¢,. The sketch shows the case of a separated
gravity current where 0 <c,, <c4. If the gravity current head is attached to both
walls, ¢y, i1s formally not defined, but it is taken to equal ¢,. Provided that g >1,
ca >0 and the flow everywhere downstream of the dam is supercritical.
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FIGURE 3. Semigeostrophic gravity current solutions % (solid line), h (dash-dot line) and T,
(dashed line) versus the similarity variable x/¢ for (a) w=0.3 and (¢) w =3. Contour plots of
the corresponding layer height fields A(x, y) at t =30 are given in (b) w =0.3 and (d) w=3.

Examples of the solutions for an attached bore (w=0.3) and a separated bore
(w =3) are shown in figure 3. Figures 3(a) and 3(c) show 4, h and T, as functions of
the similarity variable x/¢. Figures 3(b) and 3(d) are contour plots of the layer height
h(x,y) at t = 36. Both examples were computed with ¢, from (2.24). Note that in this
and subsequent figures, the along-channel length scale L is set equal to Lg.

Solutions for ¢;,, w, and h, as functions of w are given in figure 4. The solutions are
calculated for ¢, from both (2.24) and (2.25) with 8 =1.2. There are quantitative
differences between the results for the two speed relations, but the qualitative
character is the same. The bore speed and height are smallest for w =0, and increase
monotonically with w. The gravity current width remains attached to the left-hand
wall until w =~ 0.4-0.5. Once separated, w, grows only slightly with w. As anticipated,
gravity currents computed with (2.24) are faster and narrower for a given w than
those from (2.25), provided B < 2'/2. Also shown in figure 4(a) is ¢y, The critical width
for separation depends on the particular ¢, relation, but once the gravity current is
separated, ¢y, is independent of c.

The transport at the dam, x =0, and in the geostrophic gravity current Q, are
shown in figure 5. For large w, Q) is about half of the flux at the dam.

3. Single-layer numerical model

The analytical solution depends upon a number of assumptions that should be
examined, particularly the imposition of the bulk gravity current head continuity
constraint (2.23). This closure should not affect the solution upstream of x4 since the
flow is supercritical (c_ >0) for x >0, but could result in some local effect within
the gravity current. The validity of the semigeostrophic approximation in rotating
dam-break problems has been explored by HKP and Stern & Helfrich (2002) who
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FIGURE 4. Semigeostrophic solutions for (a) ¢, and cgp, (b) w; and (c) hj as functions of w.
The solid line is for ¢, from (2.24) and the dashed line from (2.25) with 8 =1.2. The dash-dot
line in () is the width at which the gravity current depth 2 =0.1. In (a—c) the reduced-gravity
numerical model results for ¢;, wy, and h;, are indicated by a <. In (a) csep (O) and cgpock (2) are
shown. In (b) the numerical results for the gravity widths where 2 =0.1 are indicated by a O.

demonstrated generally good agreement between the rarefaction solutions theory and
numerical solutions of the shallow-water equations, particularly for narrow channels
or long times.

3.1. Numerical model

In HKP, the shallow-water equations were numerically solved in momentum flux form
(i.e. with dependent variables U =uh, V =vh and h). In that form, the equations do
not admit a blunt bore-like gravity current because the Rankine-Hugoniot shock
solution gives ¢, — o0 as u and h — 0 upstream of the bore. Thus, the gravity current
solutions are compared with numerical solutions of the shallow-water equations in
advective form, (2.1)—(2.3) with § =1, that will naturally develop a leading bore. The
solution will conserve both flow force and energy at the bore (Hacker & Linden 2002).
However, if an internal shock (connecting regions of finite depth) develops, energy,
but not flow force, will be conserved across the discontinuity.

The numerical technique follows closely the finite-volume method for the conserva-
tive form of the single-layer shallow-water equations described in HKP. The method
has been tested in a number of rotating flow problems involving shocks, hydraulic
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FIGURE 5. Semigeostrophic solution for the transport Q at x =0 (thick solid line) and in the
gravity current (x > x,) as functions of w. The thin solid line is for ¢, from (2.24) and the dashed
line from (2.25) with 8 =1.2. The symbols are the reduced-gravity numerical model results for
the transport in the gravity current immediately behind the gravity head (¢) and at x =0 (O).
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FIGURE 6. Solutions for the non-rotating (w =0) case at t =40. Numerical model (solid)
and characteristic solution with (2.24) (dashed).

jumps and the presence of zero layer depth over some part of the domain (HKP;
Pratt, Helfrich & Chassignet 2000; Stern & Helfrich 2002). The only modification
necessary for the present problem is a change in the computation of the nonlinear
terms in the momentum equations from a conservative formulation to the advective
form in (2.1) and (2.2) (Leveque 2002, §9.3).

The numerical model is robust, stable and does not require any explicit diffusion
or friction terms. There is, of course, some numerical diffusion, but it is relatively
unimportant except in certain instances discussed below. Unless specifically mentioned,
no runs had explicit friction or damping terms.

The runs were all conducted in a rectangular channel of length 100 in the x-direction
and width w =0.125-4. Runs were also conducted for no rotation (non-dimensional
width w =0). No flux boundary conditions were employed. The calculations had grid
spacing dx =0.1 and dy =0.0125—0.05. The layer is initialized with u =0 everywhere,
h=1 for x <0, and 7 =107% for x > 0. The layer is considered to have zero thickness
if h <1073, though the results are not sensitive to choices smaller than this.

3.2. Model results

An example of the accuracy of the numerical technique is illustrated in figure 6 for
the non-rotating case, w=0. The agreement between the numerical and analytical
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FIGURE 7. Numerical solution for w=4 at (a) t =4, (b) t =20 and (c¢) ¢t =36. (d) The semi-
geostrophic characteristic solution at r =36. Shown are contours of the upper-layer depth 4 at
intervals of 0.1.

solutions is very good. The bore speed ¢, =0.829 and 0.828 from the numerical
and analytical solutions, respectively. The corresponding i, =0.342 and 0.343. The
greatest error is in the location of the leading edge of the upstream propagating wave
and at the junction point x, where numerical diffusion smooths out the discontinuities
in dh/0x. There is also some minor overshoot and oscillation at the bore.

The numerical solution for w =4 is shown at r =4, 20 and 36 in figure 7(a—c). The
semigeostrophic solution at ¢t =36 is plotted in figure 7(d). At t =36 there is generally
good overall agreement of the analytical and numerical solutions. The numerical
model gives ¢, =1.124 and h, =0.645 at five deformation radii behind the leading
edge, slightly slower and shallower than the semigeostrophic predictions ¢, =1.176
and h, =0.687. In all model runs, ¢, is constant after an initial adjustment time of
t ~ 1. Another difference is that the numerical solution is not quite uniform in x for
x > x4 =24.5. In figure 7(c), the layer depth on the wall decreases from 0.68 to 0.65
between x =24.5 and 30 and to 0.64 at x =39. Figures 7(b) and 7(c) show that the
solution near the gravity current head is nearly steady.

The greatest differences are in the region of the discontinuity of the analytical
solution in the vicinity of the separation point x,~0, and in the width of the
geostrophic current trailing the gravity current head. The former is expected since
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Figure 8. Upper-layer velocity vectors in the frame moving with the gravity current speed
¢, = 1.0475 from the solution in figure 7(c). The solids lines are the #=0.1 and 0.001 contours
and the dashed is the u = ¢, contour.

8 =0(1) in the vicinity of x,. The difference in width is also linked to ageostrophic
effects near the bore face ignored in the use of the gravity current head conditions
to close the semigeostrophic solution. Flow in the gravity current trailing the nose is
not uniform in y, leading to u > ¢, over some part of the gravity current. From the
semigeostrophic solution (2.7), the region of flow converging on the front occurs in
the offshore portion of the gravity current (the largest velocity occurs at the current
edge). The flow must adjust to meet the nose condition over some region immediately
behind the bore front.

In contrast, in the numerical solution, buoyant fluid within ~0.3 of the right-
hand wall is flowing towards the gravity current head with speed u > ¢, (figure 8§).
This discrepancy between theoretical and numerical velocity fields is due to potential
vorticity modification within the bore face region and will be discussed below. This
fluid is turned offshore to form a narrow jet of width ~0.5 immediately behind the
leading edge of the bore. The jet results in a broad, thin and wavy offshore portion of
the geostrophic boundary current where the fluid flows away from the head in a frame
moving with the gravity current speed. This fluid could be considered as detrained
from the gravity current, though it never separates from the current. The agreement
in the numerical and semigeostrophic solutions of the location of the 2~ =0.1 contour
is much better. The flow near the head agrees qualitatively with descriptions of some
of the experiments (SWH; GH; Kubokawa & Hanawa 1984). The offshore jet is also
similar in character to the ageostrophic boundary-layer jet that connects a Kelvin
shock to a trailing geostrophic flow (Fedorov & Melville 1996; HKP).

Numerical and semigeostrophic solutions for a narrow channel w=0.4 at r =36
are shown in figure 9. Again the general agreement between the two solutions is quite
good. The gravity current speeds are nearly the same and the bore is attached to both
walls as predicted. A significant difference, though, is the presence of a discontinuity,
or shock, at x =xg.k =26 in the numerical solution. The shock propagates at a
constant speed cgoex =0.719. An interesting feature of the shock is that it divides the
gravity current into an upstream uniform region (x4 < x < xgk) and a zone of weak
gradients in x behind the bore (xg,a < x < Xp).

The embedded shock in figure 9 is due to the difficulty of conserving potential
vorticity as fluid parcels pass through the ageostrophic boundary layer bordering the
bore face. An ideal numerical model should conserve shallow-water potential vorticity
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FiGure 9. Contours of the upper layer depth i from (a) the reduced-gravity numerical
solution and (b) the semigeostrophic theory with w =0.4 at r = 36.
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FiGure 10. Expanded view of the velocity vectors near the embedded shock in figure 9. The
velocity vectors are in a frame moving with the shock. The thick lines are contours of potential
vorticity. The values of the contours are 2, 5 and 8 from the bottom to the top of the figure.

qg=(f+v, —u,)h~! following fluid parcels. At the leading bore face, h — 0 rapidly,
consequently f +wv, —u, must approach zero at the same rate to keep g constant.
However, in the calculations, small errors in the lateral shear on the grid scale give
large errors in g. Hence, as fluid parcels pass through the ageostrophic offshore jet at
the bore face their potential vorticity is modified. Changes in potential vorticity can
be related to dissipation (Pratt 1983; Schiar & Smith 1993), here due to numerical
effects, but to be expected in general within a possibly turbulent bore.

Fluid with modified potential vorticity is pooled in the region between the shock
and the bore. The potential vorticity and the velocity vectors in a frame moving with
the shock in figure 9(a) are shown in figure 10. Fluid approaches the shock from
upstream along the left-hand wall, crosses the channel within the shock, and the
proceeds towards the bore along the right-hand wall. Fluid exits the bore (not shown)
along the left-hand wall and flows back towards the shock, but does not pass through
it. The average potential vorticity of the fluid between the bore and the shock is g =~ 16,
much greater than the initial value of ¢ = 1. There is some modification of ¢ near the
left-hand wall upstream of the shock (owing to the numerical boundary treatment),
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FiGure 11. Reduced-gravity numerical solutions with lateral viscosity v =0.005 at ¢t = 36.
(a) w=04, (b) w=4.

but this has a minor effect on the potential vorticity budget. The modification of the
potential vorticity is due primarily to fluid parcels passing near the leading edge of
the bore.

Since the potential vorticity pooled between the shock and the bore is different from
the value upstream, the wave speeds are changed. For attached flow with uniform

g#1,(213)is
ciztach _ ql/zizT_l + 711/2[1 —(1- qiz)Tz]l/z,

with T = tanh(q'?w/2). Upstream of the shock (g, 7%, h)=(1,0.285,0.184), giving
c_=0.41 and c, = 1.46. Ahead of the shock, the average value ¢ ~ 16 with (h, h) =
(0.261, 0.168) gives ¢ =0.21 and ¢, =1.82. The convergence of c_ characteristics is
consistent with a shock. Since the potential vorticity within the downstream pool
is highly non-uniform, the calculation for ¢_ is only an estimate. A calculation of
the long wave speeds on either side of the shock that accounts for the variation of
the potential vorticity would presumably give a shock speed within the range of c_.
However, the speed estimates support the idea that the shock is a consequence of the
modification of ¢ for fluid parcels passing along the bore face.

The shock does not occur for the non-rotating case (figure 6) since the flow is
irrotational and ¢ is irrelevant. It is not clearly evident for gravity currents that are
well separated from the left-hand wall (figure 7). The shock speed cgox approaches
¢y, as w decreases until the shock merges with the leading bore at w=0. As w is
increased, ¢y approaches c,,, from above. At w =1, the speed cgock = c5p- Beyond
this width, the shock is not an identifiable feature within the strong cross-channel jet
that develops near x,,. However, the process of potential vorticity modification in
the bore face region occurs for all w and is the reason for the differences between
the theoretical and numerical gravity current velocity structure discussed above in
connection with figure 8. Again, while the precise value of the modified potential
vorticity is dependent upon the numerical model and resolution, it does represent a
process (though probably not accurately) that probably occurs within a real turbulent
and dissipative gravity current head.

Since the presence of the shock is linked to non-conservation of ¢, it is not
surprising that it is sensitive to dissipation. Indeed, the presence of internal friction
(either interfacial or lateral) eliminates the shock for sufficient dissipation. Figure 11(a)
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shows the w=0.4 case with Laplacian lateral friction vV?u, v=0.005, and stress-
free boundaries. At this value of v, the shock has merged with the bore leaving a
uniform gravity current downstream of x4. The bore speed ¢, is slightly slower and
hy is slightly greater than the inviscid run. For the wider channel w =4, the gravity
current width (2 =0.1 contour) and height now taper smoothly toward the bore
(figure 11b). Again the bore travels slightly slower than the inviscid run, while 4, just
upstream of the bore is slightly smaller. In both frictional runs ¢,/h)/> <2712 As
will be discussed below, laboratory experiments also typically show gradual thinning
of separated gravity currents toward the nose.

The inviscid model results are summarized and compared to the semigeostrophic
theory in figure 4. The speeds ¢, and ¢, from the model agree well with the predictions
of the semigeostrophic solution with ¢, from (2.24) (figure 4a). Also shown is the speed
of the shock ¢y« When it is clearly identifiable. The most significant exception for cy,
is near the transition from attached to separated flow. The broader gravity current
produced by the offshore jet at the gravity current head causes separation to occur for
a wider channel (w > 0.075) than the theoretical prediction w =0.46. For separated
gravity currents, the widths w, are substantially greater than the predicted (figure 4b).
The width of the gravity current from the wall to the 2 =0.1 contour agrees well
with the theoretical prediction. Despite the significant variations in potential vorticity,
the bore speeds ¢, and heights &, fall only slightly below the theory with increasing
w, but g :cb/h;/2 ~ 1.41 is nearly constant. This is perhaps not surprising as SWH
showed that the bore properties were relatively insensitive to changes in g.

The smaller A, in the numerical solutions are also reflected in the gravity current
transports shown in figure 5. This is expected since from geostrophy Q,=h}/2 for
separated flows. The numerically computed transports at the dam (x =0) are in good
agreement with the theory, as found previously in HKP.

4. Laboratory experiments

Of the existing laboratory experiments only those of SWH are easily compared
with the theory. GH used both a uniform-width channel and a channel with different
widths ahead and behind the dam. More crucially, it is possible only for a few
situations to link their results (e.g. wy, etc.) to the basin parameters. An exception is
data from their figure 4 that will be compared to a theory for bore speed decay in §6.
Kubokawa & Hanawa (1984) had the gravity current flow out into a channel with
a non-constant width and had a sill at the dam location that produced a vigorous
two-layer exchange flow there that is beyond the applicability of the model.

The SWH experimental results to be considered are the 14 runs in their table 1.
They were all conducted in a 20 cm wide channel. The dammed region occupied 49 cm
at one end of the 183 cm long channel. The total fluid depth varied from run-to-run,
but was in the range H; =20—22cm. Their g'=2.1—17.15cms™2, H=4—8.7cm,
and f=0.21-0.87s"'. The non-dimensional channel width w=0.94—3.7 and
J&'H =2.5—8.8cms!. These experiments did not examine small w where the theory
predicts the gravity current remains attached to both walls. Nor did they report
observations of the separation point speed c.,. Thus an additional suite of experiments
was undertaken to fill these gaps.

4.1. Experimental method

The experiments were carried out on a new 1m diameter rotating table in the
geophysical fluid dynamics laboratory at the Woods Hole Oceanographic Institution.
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H Hr g f Lp cp hy, wy, cs
Run w (cm) (cm) (ecms2) (s') (cm) (cms™') (cm) (cm) (cms™!)

402 44 289 495 1.25 3.73 43 2.7 1.8 0.2
311 45 285 5.16 1.00 4.81 3.8 - .
195 47 286 12.56 1.00 7.68 6.3 22 34 0.5
099 46 285 12.52 0.50 15.18 6.2 2.7 5.7 2.0
050 59 288 18.35 035 29.72 8.7 2.8 10.3 41
025 6.1 28.8 13.53 0.15  60.55 8.6 23 15.0 3.8

TABLE 1. Summary of experimental runs. The width of the annulus was 15cm in all runs. The
asterisk superscript denotes the dimensional form of a variable.

NN B W=

The table is driven by a direct drive d.c. torque motor. Digital control of the table
position results in speed variations of less than 0.02 % of the set rotation rate. A
cylindrical acrylic tank with internal diameter of 0.965 m and depth 0.418 m was fitted
with a concentric inner polycarbonate sheet barrier to form an annulus of width
0.15m. The inner wall was fixed in place 1 cm above the tank bottom to ensure that
pressures on either side of the barrier were equal. The water in the inner cylinder
played no active role in the experiments and its only purpose was to hold the barrier
in shape. A quarter of the annulus was isolated between a fixed vertical endwall and
a removable vertical plate to form the upstream basin.

The tank was filled with saltwater of density p, ~ 1.020 to a depth slightly less than
the total depth Hy. The tank was then spun-up to a counterclockwise rotation rate
f/2. The dam was inserted and buoyant water (p;), dyed blue for visualization, was
then added behind the dam with a floating foam diffuser to form a layer of depth H.
Additional time was allowed to achieve near solid-body rotation and Hy was then
recorded. Densities were measured using an Anton Paar model DM AS8 densitometer
with accuracy of 10~°gcm™.

A summary of the experimental parameters for the six runs spanning w =0.25—4.02
is given in table 1. In all cases, H/Hr <0.21 so that the lower-layer motion should
be weak and the reduced-gravity approximation reasonable.

The experiments were visualized with two co-rotating video cameras. One was
positioned above the tank for a plan view of the flow. From these images, quantitative
observations were made of the bore position x, and separation point x,.,, and the
bore width w;,. The second camera provided a side-view image of the gravity current
through the outside tank wall (right-hand wall) about 95 cm downstream of the dam
from which &, was found. The video images were digitized directly to a computer at
specified intervals (1/6 to 2s). Additional side-view images were taken with a digital
35mm camera fixed in the lab frame.

4.2. Experimental results

In this and the following sections, some results will be presented using dimensional
variables which will be distinguished by a superscript asterisk from their non-
dimensional versions.

Plan-view images of the gravity currents for w=0.25, 0.99 and 4.02 are shown
in figure 12, along with a side-view image of the gravity current head for w =0.99.
All the images were taken about half-way through a run. The images show that
the separation point xg,, remains closer to the dam with increasing w, as expected.
Aside from the indications of turbulent mixing, the most obvious difference between
the images and the theory and numerical results of the previous sections is that the
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FIGURE 12. Plan view images of the experimental runs for (a) w=0.25, " =18s; (b) w=0.99,
t*=20s; and (¢c) w=4.02, t* =45s. The dam location is indicated by the arrow in (a). (d) Side-
view image of gravity current head for w =0.99 taken several seconds before the image in (b).



272 K. R. Helfrich and J. C. Mullarney

0 w=0.25 05 0.99 1.95 3.11 4.02
T T — — v

100 150 200 250 300 350
t(s)

FiGure 13. Dimensional gravity current head position x, versus ¢*. Experimental data (O),
annular domain ROMS model with slip walls (®) and no-slip walls (O). The solid line is the
trajectory with speed /g’ H for each case. The dashed line is from the viscous drag theory (6.4)
with Uy =1 and a =2.8. The non-dimensional channel width w is indicated. Starting times are
offset by 50s.

gravity current width (here defined as the total width of dyed fluid) continually thins
as the head is approached. It is particularly evident in figure 12(a) where the theory
and two-layer numerical model have the head attaching to each wall at the same
location, i.e. xg,,=x,. This is due in part to the annular channel which in this case
has an inner radius < Lg. However, the difference between xj,, and x; in figure 12(a)
is less than Ly and thus is not resolved by bulk closure (2.23) used in the theory.

The gravity current head position x, is plotted against ¢* in figure 13. As in
the previous experiments, some of the trajectories are noticeably curved, indicating
decreasing ¢, with time. Here it is clear that this effect becomes more pronounced as
w increases. These data can be fitted reasonably well with the exponential model

xp =Xy (1—e/T)

employed by GH. Here, t” is a decay time scale and X, is the length scale at which
the gravity current would stagnate. However, there were no indications of stagnation
of the plume head and gyre formation as reported by SWH. The corresponding
Reynolds numbers and other experimental parameters are comparable to those in
SWH.

GH found that the non-dimensional decay time 7 =1"f data could be collapsed,
after multiplication with Fr=23=(g'H/f?A,)"?, when plotted against the Ekman
number E =v/f H? (their figure 10). Here, A, is the horizontal area of the dammed
region and Fr was taken to be a Froude number related to the velocity of fluid leaving
the reservoir. For E < 1073, T Fr~%/? was essentially constant and for larger E it fell off
as E~'. However, unless the basin is so small that the upstream-propagating Kelvin
wave could travel around the upstream basin and catch up with the gravity current,
Ay should not enter the problem. For the new experiments, the time for the Kelvin
wave to circuit the upstream basin and return to the dam is longer than the first
indications of nonlinear behaviour in x,. Furthermore, the semigeostrophic solution
velocity field at x =0 is constant in time and depends only on w. GH argued that the
speed decay for runs with E < 10~ is due to drag from Taylor column formation and
inertial wave radiation into the lower layer. For E > 1073, they attributed the decay
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FIGURE 14. Dimensional gravity current width w;, vs. x, from the experiments (squares) and
annular domain ROMS model runs with no-slip walls (circles). The width is measured at
x.  —1.5Lg. The non-dimensional channel width w is indicated.

nose

to Ekman processes. They did not, however, provide a prediction for t* apart from
their scaling of the data. Furthermore, in the Ekman regime, v should scale as E~'/2,
not E~'Fr?3, The present experiments give T ~ Re**, where Re = (¢'H)"/*Lg/v. With
only six points this correlation is not conclusive, but does suggest that lateral friction
is important. The speed decay will be explored further in §§5 and 6.

There is no clear choice for the gravity current width from the experimental results
owing to the tapering plume width as the head is approached. To make a systematic
comparison possible, the width w, was taken as the width of the dyed fluid 1.5L
behind x,. This definition is similar to GH and Kubokawa & Hanawa (1984), but
differs from SWH who defined wj to include only fluid with u > ¢,. The observed w,,
is shown versus x,,, in figure 14. The width reaches a nearly constant value after
a distance 2-3Ly from the dam. Different choices for the point at which the width
plume is measured give similar results (but with different values for w,) indicating
that in the neighbourhood of the gravity current nose, the surface shape of the plume
is nearly constant. When images from different times are shifted to align the plume
nose, the shapes are nearly identical. The region of similarity grows as time increases.

The new experimental data and those from SWH are compared with the
semigeostrophic theory in figure 15. The theoretical curves are computed with ¢,
from (2.25) and the nominal value 8=1.2. In view of the nonlinear behaviour of
Xp, the experimental values of ¢, in figure 15(a) (and given in table 1) are computed
by fitting a line to the x, data from 5H/Li <t < 12. The lower limit is the initial
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FiGUure 15. Comparison of the semigeostrophic solutions for (a) ¢, and cgp, (b) w, and (c)
h, with laboratory experiments and the ROMS numerical model. The solid lines are for ¢,
from the laboratory result (2.25) with 8 =1.2 The triangles are data from the new laboratory
experiments and the squares are from the SWH experiments. The ROMS model results for
the straight channel are shown for slip walls (filled circles) and no-slip walls (open circles).

gravitational adjustment time scale found by GH. The upper limit gives an estimate
of ¢, before viscosity significantly affects the evolution. SWH also calculated ¢, from
head displacement at early times. These new data generally fall above the SWH
values without the pronounced tendency to decrease with increasing w. They do
fall slightly above the theoretical curve for small w and below for larger w, but
overall, the agreement is satisfactory considering the assumptions in the theory and
the experimental uncertainly.

The experimental values for c,, are also shown in figure 15(a). The x,.,(¢) data
from which they are computed are somewhat noisier than the x, data, but do not
display the nonlinear trend. The experiments agree well with the theory for w> 1.
For lower values of w, where the theory predicts ¢, =cy,p, the experiments have a
cross-channel tilt of the gravity current head (cf. figure 12) which increases in time.
While some of this can be attributed to the annular geometry, ¢, < ¢, for small w
also occurs in numerical solutions in rectangular channels (§5).

Gravity current width w, is shown in figure 15(b). The plotted points (given in
table 1) are the average widths in figure 14 after the initial adjustment period. Both
the new data and the SWH results fall below the theoretical prediction, though both
display the weak tendency for w, to increase with w for w > 0.6. SWH’s definition of
w;, explains the lower values in comparison to the new experiments. The non-uniform
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width of the gravity currents is also a factor in the lower widths compared to the
theory. Measurements of w, further behind the bore nose improve the agreement.

GH distinguish between the maximum wall depth of the bore head and the depth
of the trailing geostrophic current. They found that the former was about 30 % larger.
Both decayed with time, but c; /(g'h;)'/? remained a constant. The present data for A,
shown in figure 15(c) were obtained at a fixed distance downstream of the dam and
immediately behind the head. SWH found %, by taking the average in x and ¢ of the
wall depth behind the bore head. The new experiments are in reasonable agreement
with the theory for w <1 and fall below the theory for larger w, as do the SWH data.
The experiments with increasing w tend to last longer in non-dimensional time ¢* f,
allowing more opportunity for dissipative effects to become important.

5. Primitive equation numerical model

While the theory agrees qualitatively with the experiments, there are significant
quantitative differences that require explanation. The most likely sources for the
differences arise from the frictional and turbulent nature of the experiments which
are beyond the theory. The single-layer calculations have already indicated how non-
conservation of potential vorticity (i.e. dissipation) can significantly alter the flow.
An additional consideration is the continuous stratification of the experiments. The
experimental bore heights were just several cm, comparable to the initial ~1cm
thickness of the stratified interface between the layers. The finite lower layer may also
play a role, though the ratio h,/Hr <0.1 and lower-layer effect should be minimal
(Huppert & Simpson 1980). The disagreement between the experiments and theory
is further explored through numerical solutions of the three-dimensional hydrostatic
primitive equations which include these effects. One deficiency of such a model is that
mixing resulting from small-scale non-hydrostatic effects is not explicitly captured.
However, the role of turbulent mixing can be assessed through the differences between
the model and experiments.

5.1. Model and set-up

The model used is the Regional Ocean Modeling System (ROMS) model (Shchepetkin
& McWilliams 2003). The principal model features used in the present calculation are
the third-order upwind advection scheme for both density and momentum which is
advantageous in resolving the large gradients at the gravity current head. The model
has a free surface and can incorporate a number of different vertical mixing schemes,
though all the calculations presented here used Laplacian diffusion in the vertical and
horizontal with isotropic and constant coefficients.

The model was run in two configurations. The first was a rectangular channel
300cm long and either 10 or 20cm wide. This domain is similar to the SWH
experimental conditions which facilitates comparison with the theory. The domain
was filled with 20cm of still water with density p, in the region ahead of the dam
and with 4cm of water with density p; above 16cm of p, water behind. The dam
was located 70 cm from one end of the channel. The initial density interface was a
tanh(iz*) shape with A=0.25cm™! to produce an interface with thickness ~ 1cm.
The diffusion coefficients are set to the molecular values for momentum and salt of
1072 and 1.3 x 107> cm?s™!, respectively. However, because of numerical diffusion, the
actual coefficients, particularly the salt coefficient, are likely to be somewhat larger.
The horizontal domain uses a rectangular grid with dx =1cm and dy =0.25cm. The
vertical grid is stretched to concentrate about half of the 30 grid points in the upper
5-8cm.
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The numerical experiments had g’ =6.24cms™!. With H =4cm, Ly was varied by
changing f to give runs w=(0.2, 0.5, 1, 2, 3, 4). Several runs with different g’, but
w in the range above, were also carried out. The model was run with both slip and
no-slip conditions at the vertical basin boundaries.

The second configuration was an annulus with the dimensions of the laboratory
apparatus in §4. The orthogonal grid had 303 equally spaced points in the azimuthal
direction, 60 in the radial, and 30 in the vertical with the same upper-layer concentra-
tion. The runs were set up with the experimental parameters given in table 1. Runs
were made for slip and no-slip lateral walls.

5.2. Model results

Three annular channel runs with w=0.25, 0.99 and 4.02 and no-slip conditions are
shown in figure 16 at the same times as the experimental images in figure 12. The
plan-view plots show contours of

0 J—
ITI, =H1/ ,0(}",9, Z) P1 dZ,
—Hr A,O

which is a measure of the non-dimensional upper-layer depth. The side views are
contours of (o — p1)/Ap on the outer wall of the channel.

The plan-view plume structure in figures 16(a—c) agree quite well with the experi-
mental images in figure 12(a—c). The gradual tapering of the plume width towards
the nose is reproduced in the model as well as the variation of x;,, with w. Neither
the model nor the experiments show indications of baroclinic instability of the gravity
current. The main differences are the greater gravity current propagation distances
and the apparent absence of turbulent mixing in the model results. The irregularities
in the density fields on the outer annulus wall are indicative of density overturns.
These may be a manifestation of Kelvin—Helmholtz instability at the hydrostatic limit
or they may be a consequence of the inability of the model to adequately capture the
large gradients in density and velocity at the gravity current head. In either case, the
result is to produce some mixing in the vicinity of the gravity current head.

Runs with slip boundary conditions are qualitatively similar, but have larger gravity
current propagation distances than the no-slip runs. This is illustrated in figure 13
where x, from the annular channel model is plotted along with the experimental data.
The slip wall boundary condition results in a nearly linear relation between x, and
t*, and thus a constant bore speed, for all w. The no-slip boundary condition, on the
other hand, give nonlinear x, (") trajectories similar to the experiments. The numerical
results have a slightly larger decay time scale t* than the experiments. However, for
the experiments with w >1.95 where the speed decay is clear, the difference in x;
between the experiments and the slip boundary condition results is reduced by about
80 % with the no-slip conditions.

The values of w, at 1.5Lg behind x, from the no-slip annular channel model runs
are plotted along with the experimental data in figure 14. The numerical model tends
to give slightly lower values for w;, but otherwise the agreement is very good.

Despite the lack of resolved turbulent mixing in the numerical model, the overall
agreement with the experiments is good. Thus, the model can be used with some
confidence to help explain the differences between the laboratory experiments and the
semigeostrophic theory in figure 15.

The results for ¢y, ¢sp, wp and Ay, from the ROMS model in the rectangular channel
with both slip and no-slip lateral boundary conditions are included in figure 15.
The straight channel runs remove effects of the annular geometry, facilitating direct
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FIGURE 16. ROMS model runs with the annular domain and experimental parameters for (a)
w=0.25t"=18s; (b)) w=0.99, t* =20s; (¢) w=4.02, t* =45s. The left-hand column shows
contours of / at intervals of 0.1. The heavy (0.001) contour defines the plume edge. The plume
density anomaly contours (interval of 0.2) on the outside wall are shown in the right column.
In the left-hand column the dammed basin occupies the upper left quadrant, bounded by
the dam (dashed line) and the back wall (solid line). The dam is at 8 =0 in the right-hand
column.

comparison with the theory and the SWH experiments. As with the annular channel
runs, ¢, is nearly constant for slip boundary conditions and decays slowly for no-slip
conditions. Values for ¢, shown in figure 15(a) are the initial speeds calculated in the
same manner as the experimental data. Both the slip and no-slip cases agree well
with the theory computed from (2.25) with 8 =1.2.

The c,p results for w > 0.5 agree well with the theory and the experimental results.
When w <0.5, the discrepancy between the model and the theory is, as already
discussed, due to the cross-channel tilt of the leading edge of the bore that is not
captured in the semigeostrophic solution. The disagreement between the model and
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FIGURE 17. Gravity current height 4,/ H vs. x, from a subset of the rectangular domain ROMS
model runs with slip walls (solid circles) and no-slip walls (open circles). The non-dimensional
channel width w is indicated. At each w the run parameters were identical except for the
lateral boundary condition. Each pair of runs is offset by 1 unit on the vertical axis.

the experiments is due to the annular geometry of the experiments. For small w the
ratio of the deformation radius to the inner radius of the tank is > 1. The annular
domain model with no-slip conditions gives ¢, =0.42 and 0.39 for w =0.25 and 0.5,
respectively, in better agreement with the laboratory results. The difference in cy,
between slip and no-slip conditions is small.

The numerical model results for w, (at 1.5L behind x,) fall below the semigeo-
strophic theory for w > 0.5, but are consistent with the new laboratory results. The
widths are insensitive to the lateral boundary condition.

The bore height h,, is sensitive to the lateral boundary condition. Figure 17 shows
h, as a function x, for a subset of the rectangular domain runs with H =4cm and
g =6.24cms~!. The bore height was defined as the depth of the (p — p;)/Ap =0.75
density contour on the right-hand wall immediately behind the leading edge of the
bore. With slip walls, &, initially drops rapidly and then is approximately constant.
The no-slip conditions result in a gradual decrease in 4, with time. Both conditions are
consistent with the local quasi-steady gravity current speed scaling c,(t) = Bh,(t)"/>.
The slip runs had 8=1.16 +0.04 and 8 =1.26 + 0.17 for the no-slip runs. The A,
at x =100cm from the dam are plotted in (figure 15¢) for comparison with the
semigeostrophic theory. The slip condition results agree quite well with the theory.
The no-slip condition results fall within the experimental results. This again implies
that the differences between the semigeostrophic theory and the experiments are due
primarily to the no-slip boundary condition.
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6. Lateral viscous drag model

The numerical model results point to lateral boundary friction, and not Taylor
column formation and inertial wave radiation, as the cause of the slow decay in bore
speed. A simple model for this process can be derived by considering the loss of
momentum owing to friction at a no-slip vertical boundary. It is assumed that the
primary momentum balance in the gravity current is between inertia and the pressure
gradient provided by buoyancy. Loss of inertia to friction occurs only on a slow
time scale. By integrating the momentum equation across the cross-sectional area of
the bore, the slow loss of momentum is given by (in dimensional variables, dropping
the superscript asterisk for the moment)

~ -ty (6.1)

where u is the average value of the along channel velocity, A, = w,h,/2 is the cross-
channel area of the gravity current, t,. =~ pjvu/$ is the stress at the wall, v is the
kinematic viscosity, and § = 2(v¢)!/? is the boundary-layer thickness. Provided §/w, < 1,
the gravity current is essentially inertial. The change to a buoyancy—viscous balance
occurs at t.~w;/v (Didden & Maxworthy 1982; Huppert 1982). The narrowest
boundary current in these experiments was w;, ~ 1.5 cm for w =4.02, giving f. ~225s
with v=0.01cm s~!. This time is greater than the 85s duration of the experiment.

It is possible that the boundary layer will be limited by rotation to the length
scale 8y = (8gh,)'/?, where 8 =(2v/f)"/? is the Ekman-layer scale. The time scale for
the arrest is the interfacial Ekman-layer spin-down time ¢z =4h, /8¢ f. However, for
this arrest to occur, the vorticity diffused in from the sidewall must be consumed
in the interfacial Ekman layer which is present only when 8z is greater than the
interface thickness. This situation is probably not achieved in the experiments or
found in the numerical results, though flow characteristic of a weak interfacial
Ekman layer is present in the numerical runs. In the worst case for the run at
w =4.02, the arrest would occur at 7>tz =76s, near the end of the 85s duration
of the experiment. It is assumed that interfacial Ekman layers, if present, are weak
and do not contribute significantly to the drag or arrest the growth of the sidewall
boundary layer. Furthermore, the lack of speed decay in the slip boundary condition
ROMS runs indicates that interfacial Ekman drag is weak. It is possible to include
both the sidewall boundary-layer arrest and interfacial Ekman drag in the analysis,
but it is not necessary.

Substituting § = 2(vt)'/? into (6.1), along with w;, ~ Lk /2 from the experiments, and
non-dimensionalizing ¢ with f~! and u with (g’ H)"?, gives

du

Pl —2Re 12712y, (6.2)

where Re =(g'H)'/>L/v. Integration of (6.2) gives

1/2

u=Upge ", (6.3)

where y =aRe /2. A factor of 4 has been absorbed into the coefficient a, which is

treated as an adjustable parameter. The parameter Uy is the velocity at r =0. Since the
bore speed ¢, =dx,/dt ~u from continuity considerations, integration of (6.3) gives

o= 201 (1) exp (117)). 64
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FIGURE 18. The experimental scaled position of the gravity current head x; > f/c;, vs. y(t* f)/%.
The solid line is from the viscous wall drag theory (6.4) and the dashed line is the constant
velocity trajectory x, =c,t". The experiments are plotted with a =2.8 and ¢, from table 1. The
symbols indicate w =0.25 (*), 0.50 (V), 0.99 (A), 1.95 (), 3.11 (O), 4.02 (D).
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FIGURE 19. The same as figure 18 except the experimental data are from figure 4 in Griffiths &
Hopfinger (1983) and @ =2. The symbols (O, O, x, 4) correspond, respectively, to experiments
with g’ =(0.98, 6.7, 5.8,0.98) cm s 2, H = (9.8, 3.8, 10, 8) cm, and f = (1.03, 0.222, 1.01, 0.517)s~!
in a rectangular channel with w* =30cm and Hy ~ 50 cm.

The viscous decay solution (6.4) is used in figure 18 to replot the experimental data
in figure 13. The initial gravity current speed ¢, obtained for SH/Lg <t < 12 is used
for Uy. The experimental data is fit best (least squares) with a =2.8. Analysis of the
data from the ROMS runs in the annular channel gives a similarly good agreement
with the decay theory with a =2.4. The solution (6.4) with Uy=1 and a =2.8 is also
shown with experimental and numerical bore trajectories in figure 13.

As a further test of the viscous decay model, the bore trajectory data from the four
experiments in figure 4 of GH are reproduced in figure 19 using the viscous scaling.
Those experiments had w =1.3—10. Best agreement with the model occurs for a ~ 2.
For three of the experiments E <3 x 10~%, well into the range where inertial wave
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and Taylor column formation drag was proposed as the decay mechanism. The new
experiments have 4 x 107* < E <2 x 1073, Thus both sets together span the inertial
wave radiation and Ekman regimes proposed by GH.

The viscous drag model (6.4) does a good job of collapsing the two experimental
data sets and the model runs. It gives a dynamically consistent explanation of the
speed decay and predicts correctly those experiments which do not exhibit much
decay. The time scale for the decay £ =y 2 =aRe. A reduction of bore speed to
67 % of the initial speed requires an experimental duration of # ~0.167. These and
the earlier experiments were conducted by fixing the channel width and changing Lz
to vary w. Thus, experiments with smaller Ly (larger w), hence smaller Re, exhibited
the largest speed decay at similar dimensional times.

7. Summary

A semigeostrophic theory for the generation of buoyant gravity currents over a
deep and quiescent lower layer in a rotating channel has been developed. The theory
combines the ageostrophic dynamics of the gravity current head represented by a
(local) relation for the gravity current speed with the characteristic solution to the
dam-break problem in a uniform width channel. The theory gives relations between
the gravity current properties 4,, ¢, and w, and the initial reservoir properties. The
crucial parameter is the non-dimensional reservoir width w (scaled by the deformation
radius based on the reservoir depth Ly =(g'H)"/?/f). The flow downstream of the
dam consists of a rarefaction joined to a uniform (in the along-channel direction)
gravity current. The gravity current properties depend upon the bore speed relation
used in the analysis, but the qualitative behaviour is independent of the relation.
In general, if w2 0.5, the gravity current will be separated from the left-hand wall,
whereas for narrower channels, the gravity current remains attached to both walls.
Once detached, the gravity current speed, width and height increase very slowly
with w.

The theory agrees well with solutions from a single-layer shallow-water model that
internally develops a leading bore. The most significant differences between the model
and the theory are in the flow near the gravity current head and in the appearance of
an internal shock in the gravity current for w < 1. The shock arises from the absence
of potential vorticity conservation on fluid parcels flowing through an ageostrophic
boundary layer at the bore face. While the non-conservation is here purely an artefact
of the numerical solution, it is representative of dissipative processes that would occur
in a real turbulent stratified fluid. The model solution shows that the strong offshore
jet is produced by fluid flowing toward the head with speeds > ¢;,. The jet results
in ‘detrainment’ from the head in qualitative agreement with some of the earlier
laboratory experiments.

The new laboratory experiments confirmed the theoretical predictions of the left-
hand wall separation point speed ¢y, and the general behaviour for w <0.5, neither
of which had been previously examined. However, the experiments showed substantial
differences with the theory for w = 1. The current width and bore height were less
than predicted and the bore speed decayed with time. Through numerical solutions
to the full three-dimensional hydrostatic equations, these differences were shown to
be largely due to the effects of friction. In particular, the no-slip wall boundary
condition causes the slow speed decay and a corresponding slow decay in bore height.
The tapering of the gravity current width towards the head appears also to be the
consequence of internal lateral friction.
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A simple model for the effects of the no-slip wall was developed and shown to agree
well with the experiments, including some reported in GH, and the numerical results.
The speed decay had previously been attributed by GH to Taylor column formation
and inertial wave radiation into the lower layer from the turbulent bore head. The
net effect is a drag on the current. However, the success of the viscous decay model
over a range of Ekman numbers in their suggested viscous and inertial decay ranges
demonstrates that the observed decay is primarily due to viscous boundary effects.
This is important since the inertial mechanism, if it were the correct interpretation,
could potentially operate at geophysical scales, while the viscous mechanism would
probably be insignificant.

An obvious shortcoming of the theoretical model is the restriction to a single active
layer. In the non-rotating limit the role of an active lower layer does not significantly
affect the gravity current speed when h,/Hr < 0.1 (Benjamin 1968 ; Klemp et al. 1997;
Huppert & Simpson 1980). With rotation, the effect of the lower layer is similar
(SWH; Hacker & Linden 2002; Martin & Lane-Serff 2005; Martin, Smeed & Lane-
Serff 2005). However, there are difficulties in extending the initial value dam-break
solution to two active layers with rotation. The first is that it would be necessary to
solve for the evolution of a potential vorticity front in the lower layer along with the
gravity current. This front separates lower-layer fluid initially beneath the dammed
upper-layer fluid (¢ = f/(Hr — H)) from fluid downstream of the dam (¢ = f/Hr).
The second complication is that gravity current heads can generally expected to be
dissipative. There is debate about in which layer (if not both) the dissipation occurs
(cf. Klemp et al. 1997); however, unless the energy loss is uniform for all streamlines,
the potential vorticity is not conserved (Pratt 1983; Martin & Lane-Serff 2005). The
uniform potential vorticity hydraulic theory is not applicable. If the dissipation is
assumed to be uniformly distributed within a layer, then the methods developed here
could, in principal, be extended to two active layers.

This work was supported by NSF Grants OCE-0095059 and OCE-0132903 and
partially completed during the 2003 Geophysical Fluid Dynamics Program at the
Woods Hole Oceanographic Institution while J. C. M. was a summer fellow. This is
Woods Hole Oceanographic Institution Contribution number 11095.
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